
ForConX

A Force Field Conversion Tool Based on XML

Version 0.1



Contents

1 Introduction 2

1.1 The central idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Installation and running 4

2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 XML file 5

3.1 <input> . . . </input> or <output> . . . </output> . . . . . . . . . . . . . . . 6

3.2 <molecule> . . . </molecule> . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 <bonds> . . . </bonds> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 <angles> . . . </angles> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5 <dihedrals> . . . </dihedrals> . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.6 <impropers> . . . </impropers> . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.7 <nonbonded> . . . </nonbonded> . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Developers guide 13

4.1 ./md_xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 ./potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 MD program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 XML structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.5 Elements and Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



1 Introduction

ForConX is a Python code for conversion between force field files of different Molecular Dynam-

ics (MD) simulation packages. Currently, conversion for the following MD programs is available:

• Amber

• Charmm

• Dl-Poly

• Gromacs

• Lammps

but can easily be extended to new MD programs by writing an interface to the central XML

document. ForConX is free software, distributed under the terms of the GNU General Public

License version 3, as published by the Free Software Foundation and included in the source code

documentation. This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY, without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. In no

event the authors will be liable to you for damages, including any general, special, incidental or

consequential damages (including but not limited arising out of the use or inability to use the

program, to loss of data or data being rendered inaccurate, or losses sustained by you or third

parties, or a failure of the program to operate with any other programs), even if the author has

been advised of the possibility of such damages.

The features of ForConX are described in the following publication

“ForConX - A Forcefield Conversion Tool Based on XML“

V. Lesch, D. Diddens, C.E.S. Bernardes, B. Golub, A. Dequidt, V. Zeindlhofer,

M. Sega, C. Schröder, J. Comp. Chem. 2017, (submitted).

Please cite if you are using this tool.

2



1.1 The central idea

A run of ForConX consists of three phases as visible in Fig. 1. In the first phase the force

field files of a MD program are translated to a XML document (for details on the XML format

see Section 4.4). During the second phase, the XML document is checked for viability. The last

phase concerns the conversion from the XML document to the force field files of the target MD

program.

Figure 1: The ForConX conversion process.

The conversion of a force field from one MD program to another may necessitate several

runs of ForConX. During the first run, the XML document is augmented by the information

ForConX extracted from the original MD force field files. If the program terminates because

of insufficient information, the user may add, remove or modify particular lines in the XML

document and re-run Phase 2 and 3, starting from the XML-file and not again from the original

MD force-field file. In any case, Phase 2 is always part of a ForConX run. Here, all XML lines

are checked for completeness and it is verified that the information in the parameter and topology

sections is compatible for every molecule.

Making a new MD program available in ForConX is realized by writing an interface that

transforms the information from the desired MD program force field files to the XML structure

3



and vice-versa. It is not necessary to write pairwise conversion tools between the MD programs.

2 Installation and running

To install ForConX, Python 2.x must be present in the operating system. If you need to install

python, please visit https://www.python.org.

2.1 Installation

Please unzip the source code in a directory and change to the ForConX directory. The file

setup.py should be present in that directory. The program can be compiled using the standard

python method:

$ python setup.py install --user

This will place the executable (in principle) in the standard directories

.local/bin

or

∼/Library/Python/X.X/bin

in case of MacOs. Now, you should be able to execute ForConX in any directory on your

system.

2.2 Running

To run the program, type:

$ forconx inputfile.xml

where inputfile.xml is a XML file containing the conversion information (see below for details).

4



3 XML file

The XML file serves multiple purposes. Before the conversion, the user specifies the desired input

and output format in the input/output section of the XML. During the ForConX run, the XML

is used as "real-time" storage. The XML input file can be composed by several elements that

are included in a <ForConX> ... </ForConX> section. For any run, the xml file must contain

<input>, <output> and <molecule> (one for each molecule) elements.

<?xml version ="1.0" ?>
<ForConX >

<input md="MD program 1">
...
</input >

<output md="MD program 2">
...
</output >

<molecule name=" MOLNAME1" nmol ="..."/ >
...

</ForConX >

The remaining sections are facultative and include the details of the bonded and nonbonded force

field parametrizations and will be filled when this information is retrieved from the initial input

file.

Currently, the MD programs Amber, Charmm, Dl-Poly, Gromacs and Lammps are

supported. Alternatively, one may start the construction of a force field file directly from the

XML structure.

During the conversion process, ForConX writes a seperate XML document after the completion

of each phase: forconx_1.xml, forconx_2.xml and forconx_3.xml. These files can be used to

add information and re-run ForConX.

5



3.1 <input> . . . </input> or <output> . . . </output>

In the <input> . . . </input> section the user specifies the starting MD program and files that

should be converted. The target format is declared in the <output> . . . </output> section. The

<input> . . . </input> section has the same keywords as <output> . . . </output> except for

the citation defined in <reference> . . . </reference>:

<input md="XML">
<energy unit="KCAL" />
<distance unit=" ANGSTROEM" />
<coordinates pdb ="..." />
<reference >
<title > ... </title >
<author > ... </author >
<journal > ... </journal >
<volume > ... </volume >
<year > ... </year >
<pages > ... </pages >

</reference >
...

</input >

Energy, distance and polarizability unit are usually defined by the MD program. For example,

Charmm explicitly uses kcal/mol, Å and Å3. Consequently, if md=”CHARMM", ForConX

automatically overwrites the unit definitions with the default values mentioned above. Other

programs allow for several units, e.g. Dl-Poly may use kcal/mol, kJ/mol or even K as energy

unit. Also when starting from a XML structure, the units have to be specified with the options

tabled in Tab. 1. During the conversion process, the unit definitions of <input> . . . </input>

and <output> . . . </output> are used to convert the force field parameters into the units typical

for the target MD program.

The force field file structure differs for each MD program. Sometimes several files are needed

to setup a force field. MD program specific parts are given in Tab. 2.

6



Table 1: Units used in the input/output sections.

Element Key Unit
<energy unit="KEY"/> KCAL kcal/mol

KJ kJ/mol = 0.239 kcal/mol
K Kelvin

<distance unit="KEY"/> ANGSTROEM Å
NM nm = 10 Å

<polarizability unit="KEY"/> ANGSTROEM Å3

NM nm3 = 1000 Å3

BOHR a30 = (0.529 Å)3

Table 2: List of elements that can be used in the input and output sections for the different MD

simulation programs supported by ForConX.

MD Program Element
AMBER <lib file="FILE.lib"/>

<frcmod file="amber_new.frcmod"/>

CHARMM <topology file="FILE.rtf"/>
<parameter file="FILE.prm"/>
<crd file="FILE.crd"/>

DLPOLY <field file="FIELD"/>
<config file="CONFIG" />

GROMACS <top file="FILE.top"/>

LAMMPSa <command file="input.lmp"/>
<data file="data.lmp"/>
<pair file="pair_coeffs.lmp"/>
<molecule ext=".mol"/>

a only the element “command” is required to read the original LAMMPS input files

7



3.2 <molecule> . . . </molecule>

To perform a MD program 1→ XML→ MD program conversion, it is necessary to indicate each

molecule to be converted as:

<molecule name=" MOLNAME" nmol ="..."/ >

where “MOLNAME” is the name of the desired molecular species in the input files, followed by the

number of molecules, “nmol”, in the configuration file. It is possible to define several molecules

<molecule name=" MOLNAME1" nmol ="..."/ >

<molecule name=" MOLNAME2" nmol ="..."/ >

Here, the atom names within a particular molecule have to be unique but may be the very same

in different molecules.

After phase 1 of conversion, ForConX augments the XML file which now looks like this:

<molecule name ="..." nmol ="..." >
<atom name ="..." type ="..." mass ="..." charge ="..."

alpha ="..." />
<virtual name ="..." type ="..." charge ="..."

zmatrix ="... ... ..." r="..."
theta ="..." phi ="..." />

<bond name ="... ..." />
...
<angle name ="... ..." />
...
<dihedral name ="... ... ... ..." />
...
<improper name ="... ... ... ..." central ="..." />
...

</molecule >

All atoms have a unique name, an atom type, a mass and a partial charge. The polarizability

alpha is optional. Virtual atoms possess no mass but can be defined using a z-matrix style. r is

the distance between the virtual atom and the first atom in zmatrix. theta is the angle between

the virtual atom and the first and second atom in zmatrix and phi the dihedral angle between

8



the virtual atom and all atoms defined in zmatrix. All bonds between atoms are defined by

<bond> with alphabetically sorted atomnames. This bond information is very important since

the autogeneration of angle and dihedrals rely on a complete definition of all bonds within a

molecule. Furthermore, during the check of the XML structure, dihedral and impropers are only

accepted, if all corresponding bonds are present.

Only bonds, angles, dihedrals and improper torsions defined in the <molecule>-section are

taken into account for the conversion, even if additional potentials in the <bonds>,<angles>,

<dihedrals> and <impropers> section exists.

3.3 <bonds> . . . </bonds>

This section contains all force field parameters for bond potentials Ubonds. A particular bond

potential can be defined as a harmonic or Morse potential (but not both):

Ubonds =
bonds∑
ξ

kξ(r − r0ξ)2 +
bonds∑
ξ

D0
ξ(1− e

β(r−r0ξ))2 (1)

Bonds are stored in the XML structure in the following way:

<bonds >
<harm type ="... ..." r0 ="..." k="..." />
<mors type ="... ..." r0 ="..." D0 ="..." beta ="..." />

</bonds >

In contrast to the bonds in <molecule>, the identifiers are the atom types of the bonding partners

(separated by a space, e.g. type="CL HC"). As mentioned before, harmonic bonds and Morse

potentials cannot be defined for the very same type=”... ...“.

3.4 <angles> . . . </angles>

ForConX knows harmonic angles and Urey-Bradley potentials:

9



Uangles =

angles∑
ξ

kξ(θ − θ0ξ)2 +Kξ(rjk(θ)− r0jk)2. (2)

<angles >
<harm type ="... ... ..." k="..." theta0 ="..." />
<urey type ="... ... ..." k="..." r0 ="..." />

</angles >

Again, they type identifier is composed of the types of the three atoms enclosing an angle,

separated by spaces (e.g. type="HC CL HC"). Since Urey-Bradley potentials are used to in-

troduce anharmonicity to harmonic angles, a particular angle can possess a harmonic AND an

Urey-Breadley potential. Thus the type is not an unique identifier in this section.

3.5 <dihedrals> . . . </dihedrals>

Dihedral potentials are represented as Cosine torsions or Ryckaert-Bellemans potentials in For-

ConX:

Udihedrals =
dihedrals∑

ξ

kξ

(
1 + cos(nξφ− δξ)

)
+

dihedrals∑
ξ

5∑
n=0

cξn cos
n(φ)

<dihedrals >
<cos type ="... ... ... ..." n="... ... ..."

delta ="... ... ..." k="... ... ..." />
<ryck type ="... ... ... ..." k="... ... ... ... ... ..."/>

</dihedrals >

However, these potentials are mutually exclusive and hence have unique type identifiers (which

again are composed of the four atom types comprising the dihedral, e.g. type="HC CL CL HC").

3.6 <impropers> . . . </impropers>

Improper torsions are represented as cosine torsions, Ryckaert-Bellemans or harmonic angle po-

tentials:

10



Uimpropers =

impropers∑
ξ

kξ

(
1 + cos(nξφ− δξ)

)
+

impropers∑
ξ

5∑
n=0

cξncos
n(φ) +

impropers∑
ξ

kξ(θ − θ0ξ)2

<impropers >
<cos delta ="... ... ..." k="... ... ..." n="... ... ..."

type ="... ... ... ..."/>
<ryck type ="... ... ... ..." k="... ... ... ... ... ..."/>
<harm type ="... ... ... ..." k="..." theta0 ="..." />

</impropers >

Again, these potentials are mutually exclusive and hence have a unique atom identifier, com-

prised of types of the four atoms involved (e.g. type="CR NA NA HA"). For impropers, the

atom sequence is different in various MD programs. Therefore, the central atom of the improper

is stored in the corresponding improper subelement of the <molecule> section, e.g:

<molecule name="IM21" nmol ="1">
...
...
<improper central ="NA" name="NA CR CW C1" type="NA CR CW C1

"/>
</impropers >

.

In the <impropers> section, the first atom type in the identifier is the central atom.

3.7 <nonbonded> . . . </nonbonded>

As partial charges are already defined in the atom-entries of <molecule>, only van-der-Waals

interaction parameters are stored in <nonbonded>. ForConX can describe only standard

Lennard-Jones potentials:

UvdWs =
∑
ξ

∑
ξ<λ

4εξλ

((σξλ
rξλ

)12
−
(σξλ
rξλ

)6)
(3)

11



<nonbonded >
<mixing_rules epsilon =" geometric" sigma=" arithmetic "/>
<atom type ="... ..." epsilon ="..." sigma ="..."

vdw14 ="..." elec14 ="..." />
...

<vdw type ="... ..." epsilon ="..." sigma ="..."
vdw14 ="..." elec14 ="..." />

...
</nonbonded >

"Geometric" and "arithmetic" define the method of averaging and affects <atom> only when

pairwise Lennard-Jones interactions are computed. For Lennard-Jones pairs in <vdw> the mixing

rules are obsolete. Special caution is necessary when 1-4 interactions are concerned, as they are

defined in different ways in different force fields: Amber, Dl-Poly and Gromacs store this

information with the dihedral angle, whereas Charmm possesses an extra non-bonded section.

For flexibility reasons, 1-4-scaling factors for Coulomb (elec14) and Lennard-Jones (vdw14) in-

teractions can be defined seperately for each <atom> and <vdw>. However, for an atom pair

ξλ in <vdw> connected by a dihedral angle, only εξλ is scaled, but not σξλ.

12



4 Developers guide

ForConX is written in Python 2. An overview of all ForConX code files and where to find

them is given in Fig. 2. The ./potentials directory contains python files for the energy potentials

used. All core routines of ForConX are stored in the ./md_xml directory and should not be

changed. In addition to these directories, each MD program has its own directory, e.g. ./charmm.

Figure 2: Python classes in ForConX and where to find them.

13



4.1 ./md_xml

The core routines of ForConX are in this directory:

• input_output.py

• molecule.py

• bonds.py

• angles.py

• dihedrals.py

• impropers.py

• nonbonded.py

Each of these files is responsible for a particular segment of the XML document which can be

deduced from their names. Except input_output.py, these Python files contain an �interface�

to all classes which is also defined in the same Python file. Some of these classes have a parent

class defined in ./potentials.

4.2 ./potentials

This directory contains Python files for each energy potential used in ForConX. Overloading

ensures that not only a value of a particular property can be set but also that the XML structure

is immediately updated.

4.3 MD program

Each MD program has its own directory which contains at least three files: md2xml.py and

xml2md.py for the force field conversion and xyz.py for the production of a coordinate file on

a basis of a temporary forconx.pdb. Consequently, xyz.py is able to convert the MD specific

coordinate file to a PDB file and vice versa. md2xml.py and xml2md.py convert the force field

files using the Python objects described in the next section.

14



4.4 XML structure

ForConX uses the xml module of Python which is documented at

https :// docs.python.org/2/ library/xml.etree.elementtree.html

root is the root element of the XML tree. The present molecules can then be found in the

following way:

import xml.etree.ElementTree as ET
import sys

xmlfile = sys.argv [1]
root = ET.parse(xmlfile).getroot ()
for mol in root.findall(’molecule ’):

molname = mol.get(’name ’)

4.5 Elements and Classes

In order to gain access to all properties of the atom and virtual atoms of that molecule, molecule.py

offers moleculeElement as �interface� class:

from .. md_xml import molecule

current_molecule = molecule.moleculeElement(mol , molname)
for atomname in current_molecule.list("ATOM VIRTUAL "):

print atomname

The atomname and the pointer of the respective molecule, mol, are sufficient to get access to

the atom and its properties:

current_atom = molecule.atomClass(mol ,atomname)
print current_atom.type
print current_atom.charge
print current_atom.mass

These properties can also be changed:

current_atom.charge = -0.5

15



which results not only in the assignment of the new partial charge but also updates the current

XML structure thanks to overloading. Please use these classes to convert your MD force field to

the XML and back. The overwhelming rest of your code is formatted reading and writing the

force field files.

16


