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Introduction



History of free energy simulations (FES) — a roller coaster ride

(c) Gwen Tomahawk

1

https://www.gwentomahawk.com/publications/latelier/


History of free energy simulations (FES) — a roller coaster ride

Schroedinger FEP+ (2015)
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Have FES become an engineering problem?

(quoted from a preprint copy on researchgate.net)

“Although free-energy methods have made a significant impact, they aren’t as robust or accurate as we’d like.”
(Advertisement from OpenEye, 2024)
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Part I: What makes (has made) FES so hard?
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Self-terms (aka “intraperturbed
group contributions”)



Definition

∆∆Gsolv∆∆Gsolv∆∆Gsolv
M1: gas phase
M2: solution

∆∆Gpart∆∆Gpart∆∆Gpart
M1: apolar solv.
M2: polar solv.

(R-X)M2 (R-Y)M2

(R-X)M1 (R-Y)M1

∆GR-X→R-Y
M2

∆GR-X→R-Y
M1

∆GR-XM1→M2 ∆GR-YM1→M2

∆∆Gbind∆∆Gbind∆∆Gbind
M1: solution
M2: complex

Self-terms1 (“intraperturbed group contributions”)2: free
energy contributions to ∆∆G resulting from energy changes in
the group that is mutated (-X→ -Y)

3

1Biochemistry 1991, 30, 3217ff. 2J. Chem. Phys. 1991, 94, 4532ff.
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Back-of-the-envelope analysis

• The potential energy function can always be unambigously
separated into individual contributions

• However, there is no corresponding (unique) separation at
the level of free energy differences

• Free energy contributions from changes in intramolecular
terms to a free energy difference depend on the
medium/environment (M1/M2). We cannot expect
cancellation.
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∆∆Gsolv of alanine vs. serine dipeptide

System/Method ∆∆Gsolv [kcal/mol]

CH4/CH3OH1 −7.10± 0.63

Ala/Ser2 −2.83± 0.24
Ala/Ser3 −5.66± 0.08

1Experimental data from FreeSolv.

2Full td. cycle.

3Excluding “self-terms”

5J. Phys. Chem. B 2009, 113, 8967ff. Biophys. J. 2013, 104, 453ff.
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Take-home message

• Never ignore/omit legs of a td. cycle!

• ⇒ But what if you have contributions that must cancel?
• ⇒ Can one prove that a contribution is identical in both
legs of the td. cycle?
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⇒ Single/dual topology, dummy
atoms etc.



Practical Alchemy 101

Example: acetone and its enol tautomer

O

D

C3

H4
H5

H6

C1

H1

H2
H3

O

H

C3

H4
H5

H6

C1

H1

H2

D

O

C3

H4
H5

H6

O

H

C1

H1

H2

C1
H1

H2
H3

single top. dual top.

One needs placeholders — dummy atoms [{rD}]

• Should not influence the physical system [{R}]

• [{rD}] must not contribute to ∆∆G!
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My secret recipe [HJR1959]

Think about (dummy) atoms in suitable internal coordinates
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Dummy atoms 101

• Separability: Z ?= Z({R})× Z(b({rD}))

• Focus on “junction”

• Avoid needless sampling
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Dummy atoms 101

“Why was this paper still necessary in 2021?”
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Applying [HJR1959]: Restraints in
absolute binding free energy
calculations



ABFE calculations (double decoupling method)

Need for restraints1

L(igand)P(rotein)

θA
θB

θC

ΦA

ΦB

ΦC

raA

rBC

rAB

c

b

a A

B
C

∆Arest = −kBT ln
Zrest
8π2V0

Using [HJR1959]2: Zrest ≈

r2a,A,0 sin θA,0 sin θB,0
(2πkBT)3

(K′
rK′

θA
K′
θB
K′
φA
K′
φB
K′
φC
)1/2

The much more complicated expressions by Schroedinger are
not necessary3

11

1Biophys. J. 1997, 72, 1047ff.

2J. Phys. Chem. B 2003, 107, 9535ff. 3ChemRxiv:
10.26434/chemrxiv-2023-8s9dz-v3, subm. JCIM
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Part II: Where do we stand — ongoing
challenges
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A simple(?) task



Solvation free energies (FreeSolv)

AMBER/GAFF CGenFF OpenFF 2.0

JCAMD 2014, 28, 711 JCTC 2023, 19, 5988 10.26434/chemrxiv-2023-8jgjq
subm. JPC B

δ∆G = ∆Gexpsolv −∆Gcalcsolv

12



Beyond additive force fields→ QM/MM, ML/MM (ANI-2x/MM1)

(X)MMaqu (X)ANI-2x/MMaqu

XMMgas XANI-2xgas

∆GaquMM→ANI-2x/MM

∆GgasMM→ANI-2x

∆GMMsolv ∆GANI-2x/MMsolv

• indirect cycle
• OpenMM-ML2

• non-equil. switches3

• no real improvement

13
110.26434/chemrxiv-2023-8jgjq 2github.com/openmm/openmm-ml
3github.com/wiederm/endstate_correction
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Beyond additive force fields→ QM/MM, ML/MM (ANI-2x/MM)

Should I have been surprised?

• Mechanical embedding

What next?

• Better (=electrostatic) embedding

• Indirect→ direct FES?

⇒ Dummy atoms and end point issues in QM or ML?
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Aren’t we rushing ahead of
ourselves?



An observation

Results agree with experiment

(c) S. Tkaczyk

The “usual suspects”

• Description of interactions
• Sampling
• System setup / technical issues (change in net charge)
• Errors in carrying out transformations

Question(s): Can we distinguish between these??
Are we at least trying?

15
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Challenge

When carrying out FES with today’s “usual protocols:”

• flexibility of the free ligand
• flexibility of the binding site / the bound ligand
• bias from the starting pose

16



The state of FES?

(c) R. Munroe (https://imgs.xkcd.com/comics/dependency.png)
17



Thank you, etc.
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Thank you!
Questions?
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Self terms: a closer look

Consider a ligand/solute L in some medium M (gas phase,
aqueous solution, complexed to a receptor, …)

The ligand L = R– X consists of scaffold R and a functional
group X. Thus, we have:

{r} = {rL, rM} {rL} = {rR, rX}

U({r}) = UL({rL}) + UL-M({rL, rM}) + UM({rM}) =
= UR·R({rR}) + UR·X({rR, rX}) + UX·X({rX})︸ ︷︷ ︸

UL

+

+ UR-M({rR, rM}) + UX-M({rX , rM})︸ ︷︷ ︸
UL-M

+UM({rM})



Self terms: a closer look

Let’s now consider the mutation
L0︷ ︸︸ ︷

(R−X0 )M
ΔGL0→L1

M−−−−−−→

L1︷ ︸︸ ︷
(R−X1 )M

λ = 0 : R−X0 λ = 1 : R−X1

and make the potential energy dependent on λ:

U({r}, λ) = UR·R({rR}) + UR·X({rR, rX }, λ) + UX·X({rX}, λ)︸ ︷︷ ︸
UL

+

+ UR-M({rR, rM}) + UX-M({rX , rM}, λ)︸ ︷︷ ︸
UL-M

+UM({rM})

TI: ∆A = A(λ = 1)−A(λ = 0) =
∫ 1

0

(
dA
dλ

)
dλ =

∫ 1

0

〈
∂U({r}, λ)

∂λ

〉
λ

dλ



Self terms: a closer look

〈
∂U({r}, λ)

∂λ

〉
λ

=〈
∂UR·X({rR, rX}, λ)

∂λ

〉
λ

+

〈
∂UX·X({rX , rX }, λ)

∂λ

〉
λ︸ ︷︷ ︸

⇒self-term(s)

+

〈
∂UX-M({rX , rM}, λ)

∂λ

〉
λ

But:〈
∂UR·X({rR, rX }, λ)

∂λ

〉
λ

=
1

Z(λ)

∫
d{rR}d{rX }d{rM}

∂UR·X({rR, rX}, λ)
∂λ

×

exp(−βU({rR, rX , rM}, λ))

etc. The integral cannot be separated further. The “self-term”
contributions depend on the medium/environment M.
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