Mathematik für Molekularbiologen

Prüfung am 6. Februar 2012, Gruppe C

Name:

Anzahl abgeg. Blätter:

(inkl. Angabebogen!)

Matrikelnr.:

Alle Ergebnisse müssen am Angabebogen (= dieses Blatt) eingetragen werden!
Alle Rechenwege müssen klar nachvollziehbar sein!
Computeralgebrasysteme sind verboten!

1. Bestimmen Sie Maxima, Minima und Sattelpunkte der Funktion

(10 Pkt.)

$$f(x, y) = x^2y^2 - 4xy^2 - 5x^2 + 4x$$

2. Lösen Sie folgende DGL zuerst allgemein, dann für die gegebenen Anfangsbedingungen. Als Ansatz für die partikuläre Lösung verwenden Sie $y_p = a x \sin(2x) + b x \cos(2x)$ (10 Pkt.)

$$y'' + 4y = 4\cos(2x) - 4\sin(2x)$$
 AB: $y(0) = 1$, $y'(0) = -1$

3. Bestimmen Sie die ersten 4 nichtverschwindenden Terme der Taylorreihen um $\chi_0=0$ der linken und rechten Seite von

$$\sin(2x) = 2\sin x \cos x$$

4. Berechnen Sie

$$z = \left(-\frac{\sqrt{3}}{2} - \frac{\mathrm{i}}{2}\right)^5 =$$

Das Ergebnis ist in Polar- und kartesischen Koordinaten anzugeben.

5. Gegeben ist

$$\det(\mathbf{A}) = \begin{vmatrix} 1 & 1 & 2 & -1 \\ 0 & 0 & 0 & -2 \\ -1 & -2 & 1 & 1 \\ -1 & -1 & 1 & -1 \end{vmatrix} = 6$$

- a) Konstruieren Sie ausgehend von **A** eine Matrix \mathbf{A}_1 mit $\det(\mathbf{A}_1) = 5 \det(\mathbf{A})$.
- b) Analog zu a) geben Sie eine Matrix \mathbf{A}_2 an, in der alle Elemente $\neq 0$ sind, aber für deren Determinate $\det(\mathbf{A}_2) = \det(\mathbf{A})$
- c) Was ist die Determinante von 3**A**, also det(3**A**)?
- d) Was ist die Determinante der Inversen von \mathbf{A} , also $\det(\mathbf{A}^{-1})$?

- 6. a) Berechnen Sie die Länge des komplexen Vektors (-i, 1+i, -4+3i)
- b) \vec{a} , \vec{b} , \vec{c} sind dreidimensionale Vektoren (mit reellen Elementen). \vec{b} und \vec{c} seien weder parallel noch normal zueinander. Wie liegt \vec{a} im Raum, wenn gilt (mit kurzer Begründung!):

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$$

7. Untersuchen und (wenn möglich) berechnen Sie die beiden uneigentlichen Integrale

$$\int_1^\infty x^{-3/2} dx \qquad \qquad \int_1^\infty x^{-1/2} dx \qquad \qquad \text{(3 Pkt.)}$$

Mathematik für Molekularbiologen

Prüfung am 6. Februar 2012, Gruppe D

Name:

Anzahl abgeg. Blätter:

(inkl. Angabebogen!)

Matrikelnr.:

Alle Ergebnisse müssen am Angabebogen (= dieses Blatt) eingetragen werden!
Alle Rechenwege müssen klar nachvollziehbar sein!
Computeralgebrasysteme sind verboten!

1. Bestimmen Sie Maxima, Minima und Sattelpunkte der Funktion

$$f(x, y) = 2x^2y^2 + 8xy^2 - 10x^2 - 8x$$

2. Lösen Sie folgende DGL zuerst allgemein, dann für die gegebenen Anfangsbedingungen. Als Ansatz für die partikuläre Lösung verwenden Sie $y_p = a x \sin(3x) + b x \cos(3x)$ (10 Pkt.)

$$y'' + 9y = 18\cos(3x) - 18\sin(3x)$$
 AB: $y(0) = 1$, $y'(0) = -3$

3. Bestimmen Sie die ersten 4 nichtverschwindenden Terme der Taylorreihen um $x_0=0$ der linken und rechten Seite von

$$\cos(2x) = 1 - 2(\sin x)^2$$

4. Berechnen Sie

$$z = \left(-\frac{1}{2} - \mathrm{i}\frac{\sqrt{3}}{2}\right)^5 =$$

Das Ergebnis ist in Polar- und kartesischen Koordinaten anzugeben.

(10 Pkt.)

5. Gegeben ist

$$\det(\mathbf{A}) = \begin{vmatrix} 1 & 1 & 2 & -1 \\ -1 & -2 & 1 & 1 \\ -1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 4 \end{vmatrix} = -12$$

- a) Konstruieren Sie ausgehend von **A** eine Matrix A_1 mit $\det(A_1) = -\det(A)$.
- b) Analog zu a) geben Sie eine Matrix \mathbf{A}_2 an, in der alle Elemente $\neq 0$ sind, aber für deren Determinate $\det(\mathbf{A}_2) = \det(\mathbf{A})$
- c) Was ist die Determinante von $2\mathbf{A}$, also $\det(2\mathbf{A}) = ?$
- d) Was ist die Determinante der Inversen von \mathbf{A} , also $\det(\mathbf{A}^{-1}) = ?$

- 6. a) $\vec{\alpha}=(i,1+i), \ \vec{b}=(-i,-1-i).$ Berechnen Sie $\vec{\alpha}\cdot\vec{b}, \ \vec{b}\cdot\vec{a}$
- b) $\vec{a} = (1, 2, -1), \vec{b} = (4, 0, -2), \vec{c} = (1, 1, 1)$. Zeigen Sie für diese Vektoren, dass

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = -(\vec{a} \times \vec{c}) \cdot \vec{b}$$

7. Untersuchen und (wenn möglich) berechnen Sie die beiden uneigentlichen Integrale

$$\int_1^\infty \frac{1}{\sqrt{x^5}} dx \qquad \qquad \int_1^\infty x^{-1} dx \qquad \qquad \text{(3 Pkt.)}$$