

COST 1206 - EXIL workshop, Prague, April 21st-22nd, 2015

Recent Developments in the Thermodynamics of Ionic liquids

Luís M.N.B.F Santos

Nanostructures and Self-Organization WG Universidade do Porto, **Porto, Portugal**

Research Group AIM

Understanding & Fine Tuning Thermophysical & Transport Properties

"Future & Today Challenge ... "

- Advantages: Predictable Thermal Stability
 - Low Change in the Acidity/Basicity and Chemical Activity
 - Soft/ Regular Properties Change

Thermodynamics of solid / liquid / gas

(DSC, adiabatic calorimetry; drop calorimetry)

HOW Nanostructuration in ILs is reflected in their THERMODYNAMIC properties? >Alkyl chain length

A.A.H. Pádua, J.N. Canongia Lopes, J. Phys. Chem. B 110 (2006) 3330.

PHYSICOCHEMICAL Properties

HOW the Nanostructuration in ILs is reflected in their THERMODYNAMIC properties? >Alkyl chain length

JOURNAL OF CHEMICAL PHYSICS (2014) 141, 134502

TREND SHIFT CAL ... Critical alkyl length

N : Alkyl Chain Size

Journal of Physical Chemistry B **2014** *118,* 6885-6895 Phys. Chem. Chem. Phys., **2015**,17, 2560-2572

Heat Capacity .. Data

High-Precision Heat Capacity Drop Calorimeter

Heat Capacities of Ionic Liquids – C_p /V= f(N), T=298.15 K

Rocha, Santos et al. J. Chem. Thermodyn 2012, 53, 140-143 (Paper III); Rocha, Santos et al. J. Chem. Phys. 2013, 139, 104502 (Paper V);

Konicek, J.; Suurkuusk, J.; Wadsö, I. Chem. Scripta 1971, 1, 217-220; Suurkuusk, J.; Wadsö, I. J. Chem. Thermodynamics 1974, 6, 667-679 Santos et al. J. Chem. Thermodynamics 2011, 43, 1818-1823 (Paper I)

Surface tension .. Data

Langmuir 2014, 30, 6408–6418

Surface tension .. Data

Surface tension = f(N(C))

Langmuir 2014, 30, 6408-6418

(ESI-MS -MS) ... Data

Electrospray ionization mass spectra (ESI-MS -MS) Gas phase cation-anion relative interaction energy = f(N(C))

Langmuir 2014, 30, 6408-6418

Vapor pressure... Data

Volatility ... $\Delta^{g}_{I} G^{o}_{m}$ (298.15 K) = f(N(C))

 $[C_{N/2}C_{N/2}im][NTf_2] vs [C_{N-1}C_1im][NTf_2]$

M. A. A. Rocha et al. / *J. Phys. Chem. B*, **2011**, *115* (37), pp 10919–10926 M. A. A. Rocha et al. / J. Phys. Chem. B, **2012**, *116* (35), pp 10922–10927

Vapor pressu... Data

Enthalpies of Vaporization $...\Delta^{g}_{I} H^{o}_{m}$ (298.15 K) = f(N(C))

M. A. A. Rocha et al. / J. Phys. Chem. B, 2011, 115 (37), pp 10919–10926
M. A. A. Rocha et al. / J. Phys. Chem. B, 2012, 116 (35), pp 10922–10927

Vapor pressure... Data

Volatility Study of $[C_nC1im][NTf_2]$ (n = 2 - 12)...

M. A. A. Rocha et al. / J. Phys. Chem. B, 2011, 115 (37), pp 10919–10926
M. A. A. Rocha et al. / J. Phys. Chem. B, 2012, 116 (35), pp 10922–10927

Viscosity Data

Viscosities of Ionic Liquids – η = f(N), T=323.15 K

Ν

Viscosity Data

Vogel-Tammann-Fulcher Equation (VTF)... $\eta = \mathbf{A} \cdot \exp[\mathbf{B}/(T-\mathbf{C})]$

Journal of Physical Chemistry B (2013) 117, 10889-10897

Thermal Behavior

Differential Scanning Calorimetry

Thermal Behavior

Differential Scanning Calorimetry

What solvation says about the Nanostructuration in ILs?

Isothermal Titration Calorimetry, **ITC** Solvation of alcohols in Ionic Liquids

MOLECULAR PROBES

What solvation says about the Nanostructuration in ILs?

Solvation of alcohols in Ionic Liquids (ITC)

What solvation says about the Nanostructuration in ILs?

Solvation of alcohols in Ionic Liquids (ITC)

Fluorination effect

e.g. volatility

PHYSICOCHEMICAL Properties

Viscosity

Heat Capacity

- $[{}^{1}C_{1}{}^{2}C_{1}im][NTf_{2}]$
- ▲ [C₂im][NTf₂];
- \diamondsuit [$^1C_1{}^3C_1im][NTf_2]$

HOW the THERMODYNAMIC properties of ILs are reflected in their application and functionality?

Thin Film ... Vacuum deposition in a ITO surface *Size increase and coalescence* Nano size drops ... Why & How? ThermPhysical Properties of Solids and Plade

SEM

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2014) 16, 19952-19963

HOW the THERMODYNAMIC properties of ILs are reflected in their application and functionality?

Thin Film ...Vacuum deposition in a ITO surface Size increase and coalescence Nano size drops ... Why & How?

Trend Shift .. C_6C_1 imNTf₂

ThermPhys

HOW the THERMODYNAMIC properties can help the liquid textures (WAVE parterns) ... of IL thin films

ILs on thin film on a ITO surface !!!!! Thickness/ viscosity / surface tension >..... (T, P)

Luís M. N. B. F Santos

THANK YOU

Some extra/support slides

"Recent developments in the thermodynamics of ILs"

Luís M. N. B. F. Santos

* CIQ, Departamento de Química, Faculdade de Ciências da Universidade do Porto,

R. Campo Alegre 687, 4169-007 Porto, Portugal

lbsantos@fc.up.pt

Ionic Liquids have gained increasing attention due to their potential as alternative solvents, new materials processing, developing of new functionality materials, as catalysts, among others. The increasing interest in Ionic liquids (ILs) are due as well, to their unique features resulting from the type of cohesive interaction, charge distribution, structuration, polar network and apolar domains, which lead to many interesting and unusual physical and transport properties. The molecular structure and supramolecular organization of an ionic liquid is complex, comprising polar and non-polar domains that is reflected in the complexity of the thermodynamic properties of ILs and ILs mixtures. The trend shift along the alkyl series, founded in the thermodynamic properties of several ILs series was related to the structural segregation in the liquid after a critical alkyl length (CAL) is attained. This presentation will be focused in analysis and short review of the state of art concerning the experimental thermodynamics studies of ILs, including their temperature dependence: thermal behavior (glass transition, crystallization temperatures/profile, melting temperature, enthalpies and entropies of fusion); heat capacities; cohesive energies; surface tension; densities; viscosities; solvation etc. The analysis of the thermodynamics data based in the effect of the cation and anions morphologies as well as, along the alkyl chain size have been used to give support/explore the nanostructuration interpretation and effect on the ionic liquid properties and unique features as a solvent and material.

Lecture .. Plan /Ideias/fundamentals

Density

(trends; information concerning the organization at the surface; thin film stability & morphology);

Heat capacities

(trends; group method contribution; solid & liquid differentiatin);

Thermal behavior

(glass transition, crystallization temperatures/profile, melting temperature, enthalpies and entropies of fusion);

Cohesive energies/energetics

(phase stability; trends; volatility; base to the simulation & modelation)

Interface/Surface tension

(enthalpy and surface formation trends; information concerning the organization at the surface; thin film stability & morphology);

Viscosities

(trends; energy barriers; cohesive energy; anion / cation / substituent effect; hydrogen bond; symmetry);

Solution & Solvation

(molecular probes; interaction enthalpies; cavitation; Nano structuration; hydrogen bond; symmetry);

ILs mixtures

(phase diagrams; excess properties; interface properties; structuration);

Fluorination effect

(additional new phase & nano structuration; cohesive energy; interface properties & structuration);

Protic ... to Aprotic landscape! Ionic liquids

(speciation problem; acid-base equilibria; composition !; cohesive energy & volatility meaning).

Static Apparatus

M. J. S. Monte, L. M. N. B. F. Santos, M. Fulem, J. M. S. Fonseca, C. A. D. Sousa, J. Chem. Eng. Data, 51 (2006) 757-766.

1

TR AP

Vac uum

Two MKS Baratron Capacitance Manometers 631A (Calibrated NIST) [0.4 - 133 Pa (423 K) ; 4 - 1333Pa (473 K)]

Knudsen Effusion Methods

Knudsen effusion apparatus combined with a quartz crystal microbalance - Schematic view

Knudsen Effusion Methods

Knudsen effusion apparatus combined with a quartz crystal microbalance

high vacuum <10⁻⁶ mbar.

Internal cold trap (< background sign, > the repeatability).

QCM positioned above the effusion cell.

Calvet Microcalorimetry drop method

Direct determination of $\Delta^{g}_{cr/l}H^{o}_{m}$

L. M. N. B. F. Santos, B. Schröder, O. O. P. Fernandes, M. A. V. Ribeiro da Silva, Thermochim. Acta, 415 (2004) 15-20.

Capilary tubes: 20 – 30 mg **Sample**: 3 – 5 mg

$$\Delta_{cr/l}^{g}H_{m}^{o}$$
 (T=298.15 K) = $\Delta_{cr/l, 298.15 K}^{g, T}H_{m}^{o} - \Delta_{298.15 K}^{T}H_{m}^{o}$ (g)

Micro Differential Scanning Calorimetry

Setaram : Calvet Type Micro DSC III

High Precision heat capacity measurements .. ILs

Isothermal Titration Calorimetry

Thermochemistry Laboratory, Lund, Sweden **Twin heat conduction calorimeter**

R

Luís M. N. B. F. Santos et al. J. Therm. Anal. Calorim. 2007, 89, 175-180