

UNITED KINGDOM · CHINA · MALAYSIA

Anna K Croft

Department of Chemical and Environmental Engineering University of Nottingham, Nottingham, UK

Croft group @ Nottingham

M. J. Earle, S. P. Katdare and K. R. Seddon, Org. Lett. 2004, 6, 707.

Understanding molecular drivers

Eyring equation

H. M. Yau, S. A. Barnes, J. M. Hook, T. G. A. Youngs, A. K. Croft, and J. B. Harper, *Chem. Commun.*, 3576, 2008

S. G. Jones, H. M. Yau, E. Davies, T. G. A. Youngs, J. B. Harper and A. K. Croft, *Phys. Chem. Chem. Phys.*, 1873-1878, **12**(8), 2010

	Ethanol	Ionic liquid
ΔH [‡] / kJ.mol ⁻¹	48.3 ± 1.4	49.6 ± 0.6
ΔS [‡] / J.K ⁻¹ .mol ⁻¹	-252 ± 4	-229 ± 2

S. G. Jones, H. M. Yau, E. Davies, T. G. A. Youngs, J. B. Harper and A. K. Croft, *Phys. Chem. Chem. Phys.*, 1873-1878, **12**(8), 2010

	Ethanol	Ionic liquid
Δ(ΔH [‡]) / kJ.mol ⁻¹		1
$\Delta(\Delta S^{\ddagger}) / J.K^{-1}.mol^{-1}$		\uparrow

S. G. Jones, H. M. Yau, E. Davies, T. G. A. Youngs, J. B. Harper and A. K. Croft, *Phys. Chem. Chem. Phys.*, 1873-1878, **12**(8), 2010

An anion- π interaction

S_N1 S_NAr S_N2 Cation – bmim⁺ F NO_2 NO₂ Anion – $NTf_2^ \begin{array}{c} \bigcirc \\ F_3C_S N_S CF_3 \\ O^{-1} I I^{-1}O \\ O O \end{array}$

S. G. Jones, H. M. Yau, E. Davies, T. G. A. Youngs, J. B. Harper and A. K. Croft, *Phys. Chem. Chem. Phys.*, 1873-1878, **12**(8), 2010

An anion- π interaction

S. G. Jones, H. M. Yau, E. Davies, T. G. A. Youngs, J. B. Harper and A. K. Croft, *Phys. Chem. Chem. Phys.*, 1873-1878, **12**(8), 2010

Organisation relative to ethanol

S. G. Jones, H. M. Yau, E. Davies, T. G. A. Youngs, J. B. Harper and A. K. Croft, *Phys. Chem. Chem. Phys.*, 1873-1878, **12**(8), 2010

Organisation relative to ethanol

S. G. Jones, H. M. Yau, E. Davies, T. G. A. Youngs, J. B. Harper and A. K. Croft, *Phys. Chem. Chem. Phys.*, 1873-1878, **12**(8), 2010

Organisation relative to ethanol

S. G. Jones, H. M. Yau, E. Davies, T. G. A. Youngs, J. B. Harper and A. K. Croft, *Phys. Chem. Chem. Phys.*, 1873-1878, **12**(8), 2010

Anion-dominated changes

Mentschukin reaction

S_N2

Hammett data

H. M. Yau, A. G. Howe, J. M. Hook, A. K. Croft, J. B. Harper, Org. Biomol. Chem., 3572-3575, **7**, 2009.

Hammett data

H. M. Yau, A. G. Howe, J. M. Hook, A. K. Croft, J. B. Harper, Org. Biomol. Chem., 3572-3575, **7**, 2009.

Complex data

	ΔH‡ / kJ.mol ⁻¹		ΔS [‡] / J.K ⁻¹ .mol ⁻¹	
Substituent	Acetonitrile	lonic liquid	Acetonitrile	Ionic liquid
R = OCH ₃	40.9 ± 1.2	47.7 ± 1.1	-220 ± 4	-188 ± 4
R = <i>p</i> -CH ₃	43.2 ± 1.1	48.8 ± 0.9	-219 ± 4	-193 ± 3
R = <i>o</i> -CH ₃	42.6 ± 1.3	53.5 ± 2.0	-226 ± 4	-181 ± 7
R = H	43.4 ± 0.8	49.9 ± 0.8	-224 ± 3	-195 ± 3
R = Br	47.7 ± 1.0	51.5 ± 1.2	-210 ± 3	-191 ± 4
R = COOCH ₃	50.0 ± 2.8	53.1 ± 2.1	-205 ± 9	-187 ± 4
$R = NO_2$	44.2 ± 1.0	48.7 ± 0.7	-225 ± 3	-207 ± 2

Complex data

	ΔH [‡] / kJ.mol ⁻¹		ΔS [‡] / J.K ⁻¹ .mol ⁻¹	
Substituent	Acetonitrile	Ionic liquid	Acetonitrile	Ionic liquid
R = OCH ₃	40.9 ± 1.2	47.7 ± 1.1	-220 ± 4	-188 ± 4
R = <i>p</i> -CH ₃	43.2 ± 1.1	48.8 ± 0.9	-219 ± 4	-193 ± 3
R = <i>o</i> -CH ₃	42.6 ± 1.3	53.5 ± 2.0	-226 ± 4	-181 ± 7
R = H	43.4 ± 0.8	49.9 ± 0.8	-224 ± 3	-195 ± 3
R = Br	47.7 ± 1.0	51.5 ± 1.2	-210 ± 3	-191 ± 4
R = COOCH ₃	50.0 ± 2.8	53.1 ± 2.1	-205 ± 9	-187 ± 4
R = NO ₂	44.2 ± 1.0	48.7 ± 0.7	-225 ± 3	-207 ± 2

Understanding molecular drivers

UNITED KINGDOM · CHINA · MALAYSIA

H. M. Yau, A. K. Croft and J. B. Harper, *Faraday Discuss.* **2012**, *154*, 365. H. M. Yau, S. Keaveney, B. Butler, E. Tanner, M. Guerry, S. George, M. Dunn, A. K. Croft and J. B. Harper, *Pure Appl. Chem.*, **2013**, *85*, 1979.

UNITED KINGDOM · CHINA · MALAYSIA

 $S_N 2$

Organisation around Nitrogen key

- Ionic liquids are not the same as molecular solvents.
 - Being mixtures of ions introduces more significant interactions than in molecular solvents.
 - Considering them in terms developed for molecular solvents does not work.
- Electrostatic interactions with (incipient) charges aren't as important as is often touted it is all about the entropy.
 - Organisation about both starting material and transition state must be considered, in all forms.
- There is the potential to exploit these effects in controlling reaction outcome

- Upgrade calculations to ensure effects are taken into account
 - Switch from DL_POLY to Amber
 - Start incorporating polarisation

Acknowledgements

UNITED KINGDOM · CHINA · MALAYSIA

UNITED KINGDOM · CHINA · MALAYSIA

1 (1

1